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Mathematical models described by partial differential equations appear often when different 
phenomena related to atmospheric transport (for example, advection and diffusion processes) 
are studied. Truncated Fourier series can be used in the discretization of the space derivatives 
resulting in a pseudospectral method. In this way the partial differential equation is 
transformed into a system of ordinary differential equations. This system is normally solved 
by so-called “step-by-step” integration methods. The stability properties of these methods are 
studied. Some bounds for the time-stepsize are derived. Several formulae and predic- 
tor-corrector schemes with large stability intervals on the imaginary axis are constructed. 
Numerical experiments with eight time-integration algorithms are carried out. Some recom- 
mendations concerning the choice of the time-integration algorithms in three different 
situations are given. It is emphasized that in a package for the solution of partial differential 
equations describing transport processes in the atmospheric environment one should have 
several time-integration algorithms, each of which can be chosen optionally. Finally, the 
possibility of using variable stepsize, variable formula time-integration algorithms is briefly 
discussed. 

1. THE PSEUDOSPECTRAL (FOURIER) DISCRETIZATION 
OF THE SPACE DERIVATIVES 

Consider 

XE [0,27c], YE lO,27Ll, tE IO, q, 

(l-1) 

c(x, y, 0) = f(x, Y) for vx E [O, 7c] A vy E [O, 2n] (f being given), 

(1.2) 

c(O, Y, r> = c(27h Y, q for vy E [O, 2n] A Vt E 10, z-1, (1.3) 

c(x, 0,q = c(x, 27r, t) for VxE[O,2n]AVtE[O,T]. (1.4) 
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Introduce grids X,, YN and a matrix G(t) as follows: 

X,M = x,/x0 = 0, x,+ , = x, + Ax, Ax = 
271 

2A4+1’ 
m=O(1)2Mlx,,,~,=27r 

I’ 
(1.5) 

v,iv,=O,l,+,=r,+dy.A~~~, n=0(1)2N,y,,,+,=2n , 
i 

(1.6) 

.‘. 

..’ G(t) = (1.7) 

‘. . 

The trigonometric polynomials given below can be constructed by the use of A’,,. 
Yy and the elements of G(C); see, for example, [ 11 ] 

&,,(x, I) = A,(t) + \‘ 
k:I 

lak&> cos(kx) + bk.&) sin(kx) I. tr=0(1)2N. 

(1.8) 

A 

T&?Lv, l) = A,*(f) + \‘ 
k=l 

Ia k*.,(t) cos(kv) + bk*.Jf) sin(ky) 1, m=0(1)2M. 

(1.9) 

The coefftcients of these trigonometric polynomials can be calculated by the use of 
the following formulae (for x, E & A y, E Yz): 

1 2.11 

A,(t) = ~ 
2M+I m;. - c(x,, .v,t 11, 

211 

ak,,(t) = 2 \‘ c(x,, y,, t) cos(kx,), 
2A4+1 ,o 

bk.n(f) = 
2 2dl 

\‘ c(x,, J,, , t) sin(kx,), 
2M+l ,” 

ak*,$) = 2 
2.v 

\’ c(x,,, , Y,, t> cos(kv,), 
2N + 1 ,:(, 

b,?,,&) = & g 4x,, Y,, t) sin(b,), 
n -0 

II = 0( 1) 2N. 

n=0(1)2N, 

n = 0( 1) 2N, 

m = O(1) 2M, 

m=0(1)2M, 

m=0(1)2M. 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 
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Let ri be the vector formed by the elements of the ith row of matrix G(t) and c,~ be 
the vector formed by the elements of the jth column of matrix G(f). This means that 

It is clear that some approximations Fi and ti to the vectors 

i 

ac(X,v Yip 13 f, ac(xl 3 Yi- I7 ‘) W,,,,~ Yi- 13 f> 
ax ' ax 3.3.) i ax ' i= 1(1)2N+ 1,(1.18) 

i 

aC(xjp,, Y,, t> aC(xj-,, YI, f> Wxj- I T Yz,~~ f) 

ay ' a 
Y-*.3 i a?? ' j= 1(1)2Mf 1,(1.19) 

respectively, can be computed by the use of (i) the elements of matrix G(f) as input 
information, (ii) equalities (1.8t( 1.17), and (iii) the derivatives of the trigonometric 
polynomials (1.8), (1.9). Some FFT (fast Fourier transform) algorithm must be 
applied in order to increase the efficiency of the computations (see 14, 7, 13, 25, 33 I). 

It is easy to see that there exists a (2M + 1) x (2M + 1) matrix S,, and a 
(2N + 1) x (2N + 1) matrix S,v such that 

ti=S,$,yi (i= 1(1)2M+ 1) and c!~=S,~C~ (j= l(l)ZN+ 1). (1.20) 

Let 

g(f) = i r, v r2 T...y r2,+, + I 1 and l!(f) = {c,, C2r..., cl\+,}. (1.21) 

Since ‘li and ?j are approximations of &/ax and aclay respectively on the points of 
grid X,,, x YN, it is clear that the partial differential equation (1.1) can be approx- 
imated (on the points of grid X, x Y,V) by a linear system of ordinary differential 
equations (ODE’s) 

$ = (US + VPSP) g, (1.22) 

where g is an abbreviation of g(f), S and .!? are block diagonal matrices (S contains 
2N + 1 diagonal blocks equal to matrix S,, while 3 contains 2M + 1 diagonal 
blocks equal to matrix S,), and U and V are diagonal matrices, the diagonal elements 
of which are values of functions u and u on the points of grid X,W x YN. 

Observe that vector g(f) is formed by the elements of matrix G(f) when these are 
ordered by rows, while g”(t) is formed by the elements of matrix G(t) when these are 
ordered by coiumns. This shows that there exists a permutation matrix P such that 

m = PdO and P-’ = P. (1.23) 
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Let F(r) = s,(t). By (1.23) it follows that we have to use vector 

z(t) = P- ‘f(t) = PS&) (1.24) 

in order to get correspondence with the coordinates of vector Sg. 
Relations (1.23) and (1.24) are also used in the derivation of (1.22). 
The method used in the transformation of the partial differential equation (1.1) into 

the system of ODE,s (1.22) is well known as the pseudospectral (Fourier) method 
([3,6, 13, 18,25, 33,361). Three remarks are necessary in connection with this 
transformation. 

Remark 1.1. The assumption x E 10, 27~1 is not a restriction. If x belongs to an 
arbitrary interval [a, b] E IR, then the interval ]a, b] can be transformed to 10, 2n ] by 
the substitution r= 27r(x - a)/(b - a). The same is true for the interval of 
variable y. 1 

Remark 1.2. If the equation 

; = u(x, Y, t) g + v(x, y, t) $ + Q(x, y. t) (1.25) 

is to be solved instead of (l.l), then an extra term (a vector whose elements are the 
values of Q(x, y, t) on the points of grid X,, x Y,,,) has to be added in the right-hand 
side of the system of ODE,s (1.22). 1 

Remark 1.3. Denote RX = (US + VPL?P)g. In the actual computations with the 
Fourier method, one normally uses vector R *. Thus, the matrices S, P, and L? are 
neither calculated explicitly nor stored in the calculations. However, these matrices 
are needed in the stability analysis. 1 

Assume that (1.1) is transformed into (1.22). Some time-integration algorithm has 
to be applied in order to obtain an approximate solution of (1.22). The problem of 
choosing the time-integration algorithm will be discussed in the next sections. 

2. STABILITY RESTRICTIONS ON THE TIME STEPSIZE 

Consider the test-equation 

ac ac at=“%’ u being a constant. 

In this special case (when u is a constant), the system of ODE’s (1.22) can be 
rewritten as 

& - = usg. 
dt (2.2) 
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Consider the grid 

T~={f,&o=O,t~+,= k t +At,At= T/K,k=O(l)K- 1,KE N}. (2.3) 

The time-increment At will be called time-stepsize (or shorter, stepsize). 
Numerical time-integration algorithms of explicit type are normally used in order 

to calculate some approximations g, (k = 1 (l)K) to the exact solution vectors g(tk) of 
system (2.2). Assume that all approximations up to some g,- , have already been 
found. Then an explicit forward time-integration algorithm for calculating the next 
approximation g, is given by a formula of the following type: 

g,= 2 aig,-i+At i pifk-i, k=s(l)K, fi=u.Sg, (j=O(l)K). 
i- I ikl 

(2.4) 

If s = 1, then the algorithm is self-starting; otherwise some starting procedure is 
needed in the calculation of g,, g, ,..., g,-, . Sometimes the starting procedure is used 
in the calculation of more than the s - 1 starting vectors. Moreover, the starting 
procedure may be used (and in fact is often used) with some At, #At. 

Formula (2.4) is called the general linear multistep method (see e.g., Ill. 14, 
19, 27,401). Very often the following three polynomials: 

are associated with the general linear multistep method (2.4). 
The following three definitions will be useful in the further considerations. 

DEFINITION 2.1. It is said that an arbitrary polynomial P(z) satisfies the root 
criterion if all roots of P(z) lie on the unit disk (i.e., IzI < 1 A z E C) and that if there 
are roots on the unit circle (I z I= 1 A z E C), then these roots are simple. 1 

DEFINITION 2.2. Let 6 be an arbitrary complex number whose real part is 
nonpositive (i.e., hE G A Re(h) < 0). The linear multistep method (2.4) is said to be 
absolutely stable for i if the third of its associated polynomials n(c, i) satisfies the 
root criterion. I 

DEFINITION 2.3. The set S* of all h with hE C A Re(6) < 0 for which (2.4) is 
absolutely stable is called the absolute stability region for the linear multistep 
method. I 

The concept of absolute stability of a numerical method for integration of systems 
of ODE’s has been introduced by Dahlquist [ 101. The importance of this concept can 
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be illustrated as follows. Let u = -1. Denote by ,I; (i = l(1) 2M + 1) the eigenvalues 
of matrix S in (2.2). Consider 

l=max(lAil) (for i= 1(1)2M+ 1, Re(I,)<O) and h=lAt. (2.6) 

The linear multistep method will produce stable results when it is applied in the 
solution of system (2.2) with u = -1 only if At is chosen so that h is inside the 
absolute stability region S*. 

The above analysis shows that both the eigenvalues of matrix S (these depend on 
the space discretization chosen) and the absolute stability region (it depends on the 
linear multistep method which is selected) impose some restrictions on the choice of 
the time-stepsize At. Our purpose in this paper is: to use some specific properties of 
the special problem under consideration (system (2.2)) to derive some stability bounds 
for At when explicit time-integration algorithms are applied in the solution of the 
system of ODE’s. First, some information about the eigenvalues of matrix S is 
needed. The following result is a simple modification for our needs of a result 
obtained by Kreiss and Oliger 125 1; see also Fornberg 1 13 1. 

LEMMA 2.1. Matrix S is antisymmetric and its eigenvalues are the elements of 
the set A * = {nj = (-M + j)i/j = 0( 1) 2M, i* = - 1 }. 1 

Lemma 2.2 (given below) is a simple corollary from Theorem 2.10.2 in Lancaster 

l-281. 

LEMMA 2.2. An antisymmetric matrix S is orthogonally similar to the diagonal 
matrix of its eigenvalues, i.e., there exists an orthogonal matrix H such that S = 
HAHT, where A is a diagonal matrix whose diagonal elements are the eigenvalues of 
matrix S. 1 

A stability bound for the time-stepsize At in the numerical integration of (2.2) can 
be obtained using Lemmas 2.1 and 2.2. 

THEOREM 2.1. Let (i) himag be the length of the interval on the positive part of 
the imaginary axis (containing the origin) which belongs to the absolute stability 
region S* of the linear multistep method (2.4) and (ii) the number of points in the 
space grid (1.5) be 2M + 2. Then the application of (2.4) in the solution of (2.2) with 
any constant u # 0 leads to stable computations ifAt is chosen so that 

(uj MAt < himap. (2.7) 

Prooj Use (i) the fact that the eigenvalues of S are given by Lemma 2.1, (ii) the 
equality S = HAHT, and (iii) the substitution HTg = z to split the system (2.2) into 
2M + 1 independent ODE’s 

dz 
-‘-=iu(-M+,u)z,, 
dt 

,u=0(1)2M, i*=-1. (2.8) 
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The computations in the solution of any equation (2.8) by (2.4) will be stable [lo] if 
l”I lwM+PIAt < himag* Global stability for the whole set (2.8) will obviously be 
achieved by choosing At so that (2.7) is satisfied because A= max(\ -M + ,u]) = M 
(for ,U = O(1) 2M). i 

COROLLARY 2.1. Let 

(i) x belong to an arbitrary interval [a, b] (instead of 10, 27t]), 
(ii) the number of points in the space grid (1.5) be 2M + 2, 
(iii) himag be US in Theorem 2.1. 

Then the stability bound (2.7) has to be modtj?ed to 

himag 

At=pijzM2n 

(b-a) , 
(2.9) 

The number of points in the space grid (1.5) can be odd; i.e., x, = (m - 1) Ax, 
m = 0( 1) 2M. If this is so, then [ 131 the set of eigenvalues is A * = {A,i = 
(-M + 1 + j)i/(j = O(1) 2M - 2, i* = -l), &, = 0}, i.e., 0 is a double eigenvalue. 
In this situation the following corollary of Theorem 2.1 holds. 

COROLLARY 2.2. Let 

0) x E [a, bl, 
(ii) the number of points in the space grid (1.5) be 2M + 1 (M > I), and 

(iii) himag be us in Theorem 2.1. 

Then the stability bound for At is 

At < himag b-a 
(u/ (M- 1) 7’ ’ 

(2.10) 

The time-stepsize At is used in the numerical integration of (2.2) by some formula 
of type (2.4). However, (2.2) is found after some discretization of the space derivative 
in (2.1) on the points of some grid (1.5). Therefore, it is necessary to relate the time- 
stepsize At to the space increment Ax. In the case where the space grid contains 
2M + 1 points, the relation Ax = (b - u)/2M holds and the following stability bound 
is easily obtainable. 

COROLLARY 2.3. The stability bound for At is related to the choice of Ax by 

Atc [ 
himag M 
(uln= Ax I (2.11) 

when conditions (i)-(iii) in Corollary 2.2 are satisfied. 1 
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The use of a single formula of type (2.4) has been assumed until now. The so- 
called predictor<orrector schemes can also be used. In the next part of this section 
we shall describe how the above results can be extended to a special class of predic- 
tor-corrector schemes, the PECE schemes. A PECE scheme is defined by the 
following formulae: 

gz = 9 aTg,_, + At i @fkPi 
i=l i=l 

f k* = usg,* 

g,= k aig,-i+AtPof: +At 2 pifk-i 
i= I i=l 

fk = US& 

(prediction), 

(evaluation), 

(correction), 

(evaluation). 

The following live polynomials are associated with any PECE scheme: 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

It is clear now that all results from the first part of this section (which hold in the 
case where a single formula (2.4) is used) can be extended for the PECE schemes if 
the absolute stability region of polynomial (2.18) is considered instead of the absolute 
stability region of polynomial n(<, i) from (2.5). 

Consider now the partial differential equation (t as in (1.1)) 

$ = u(xv J’, f) ; + u(x, y, t) $ + Q(x, y, t), XE la,,b,l, YE [a,,b,]. 

(2.19) 

Assume that the numbers of grid-points are odd in both the x and y directions 
(2M + 1 and 2N + 1, respectively). Denote 

(2.20) 
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Then one should expect the computations to be stable if 

himag At <- 
u*@4- 1) + v”(N- 1) -’ 

?L MAX I NAy ’ 

If A4 = N and Ax = Ay, then (2.2 1) reduces to 

L himag M 

Af< (u*+v*)n M-l Ax* I 

(2.21) 

(2.22) 

Remark 2.1. The ratio At/Ax is often used in the stability criteria. To, the 
authors’ knowledge, the first stability criterion containing At/Ax was proposed by 
Courant, Friedrichs, and Lewy [8]. If the stability bound has to be extended to two- 
dimensional space regions, then it may be better to express the stability criterion only 
as a bound for At; see (2.21). 1 

It is seen that the stability bounds given in this section depend on three factors: 

(i) on the problem that is to be solved (through U* and v*). 
(ii) on the discretization of the space derivatives (through A4 and N), and 

(iii) on the time-integration algorithm chosen (through himag). 

The dependence of the stability bounds on the particular time-integration algorithms 
will be studied in Sections 3 and 4. 

3. ON THE LENGTH OF THE STABILITY INTERVAL 
FOR LINEAR MULTISTEP FORMULAE 

Several results concerning the maximal value of himag for the time-integration 
algorithms of type (2.4) will be given in this section. 

THEOREM 3.1. Let F be any formula of type (2.4). The stability interval himag of 
formula F satisjies the following inequality: 

(3.1) 

Proof. The assertion of Theorem 3.1 can easily be deduced from a more general 
result (Theorem 5.1 in Jeltsch and Nevanlinna [24, p. 821). 1 

Remark 3.1. Both bounds in (3.1) can be reached. For the Euler formula (which 
can be found from (2.4) by choosing s = 1, GL, = 1, /I, = 1) we have himag = 0. For the 
leapfrog (midpoint) rule (which can be found from (2.4) by choosing s = 2, GI, = 0, 
a2 = 1, /3i = 1, p2 = 0) we have himag = 1. Therefore the leapfrog rule is one of the 
best formulae (among the formulae of class (2.4)) with regard to the stability 
requirements. However, the order of this formula is only 2 (see, e.g., [27] for some 
details concerning the order of a formula (2.4)). If the accuracy requirements 
dominate over the stability requirements, it may be more profitable to use formulae of 
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higher order even if himag < 1 (for example, a third order formula with himne = 0.72 
has been used in 136)). We shall consider the relationship between the accuracy 
requirements and the stability requirements in the next sections. I 

Remark 3.2. The result obtained by Theorem 3.1 is entirely different from some 
results obtained for systems (2.2) which arise from the discretization of parabolic 
differential equations. In the latter case matrix S is symmetric and has real eigen- 
values. This means that the length of the interval on the negative real axis A,,,,, which 
belongs to S*, is of interest. Let y be an arbitrary positive real number. Then a 
formula of class (2.4), for which h,,,, = y, can be constructed (121, 24, 30, 46 I). It 
should be emphasized that if y is very large, then the formulae are very inaccurate 
(23 1. Nevertheless, the above relationship is much less restrictive than the 
corresponding relationship (3.1) for himae. I 

The following two theorems (which are obvious modifications of theorems proved 
in [24]) give some information about the possibility of constructing a formula of a 
given order and with a given stability interval himap. 

THEOREM 3.2. For any y E [O, l] and for any s E (2, 3,4} an explicit linear 
multistep formula (2.4) of order p = s and with hi,ag = y can be constructed. 1 

THEOREM 3.3. If y > 0 and s = 1 (mod 4), then no explicit linear multistep 
formula (2.4) of order p. = s and with himag = y exists. I 

These theorems tell us that if the accuracy of the leapfrog rule is not sufficient for 
our problem, then it is possible to construct a formula of higher order (3 or 4 but not 
5; see Theorem 3.3) which has nearly the same stability properties as the leapfrog 
rule. Some special formulae of order 3 are derived in Zlatev and Bsterby I50 1. 

The following theorem shows that the use of implicit linear multistep formulae will 
not lead to a large increase of himag when the order of the formula is larger than 2. 

THEOREM 3.4 (Dekker [ 121). The inequality 0 < himag < \/5 holds for an)' 
implicit linear multistep formula tfits order is higher than 2. g 

Remark 3.3. The upper bound in the above inequality is obtainable. An example 
is the classical Milne-Simpson formula (which is of order 4; see 1271). 1 

Remark 3.4. If the restriction on the order of the formula is removed, then even 
methods which are stable on the whole imaginary axis (i.e., with hima = 00) can be 
constructed. An example is the well-known trapezoidal rule which is of order 2 and 
for which himag = a. I 

Remark 3.5. It is well known that the use of implicit formulae is justified only in 
the case where this use allows us to specify large time-stepsizes. Theorem 3.4 
indicates that if the accuracy requirements are stringent (so that a formula of order 
higher than 2 must be used), then explicit formulae have to be used. Indeed, in this 
situation the use of implicit formulae leads to a great increase of the computational 
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work per step. This increase cannot be compensated by the decrease of the number of 
steps because the small stability bound (fi) does not allow us to increase the time- 
stepsize very much. Therefore, only explicit formulae are discussed in this paper. 1 

4. ON THE LENGTH OF THE STABILITY INTERVALS 
FOR SOME SPECIAL PECE SCHEMES 

Consider a special PECE scheme defined by the following formulae: 

gk* =a$&, + (1 -a,*)&, +dt t P&f-j, f k* = us&q, (4.1) 
i=l 

gk=a,gk-,+(l-a,)gk-,+dfP,,f,*+dr~Pi,~~k-;. fk = @k. 
i-l 

DEFINITION 4.1. Assume that: 

(i) The computations are carried out by formulae (4-l), (4.2). 

(ii) The parameters a,* and a, can freely be chosen so that a,” E 1) and 
a, E IO, 2) for each s > 1. 

(iii) The coefficients {pz}, i = l(l)s, are determined so that (4.1) is an explicit 
linear multistep formula of order S. 

(iv) The coefficients {piS}, i = O(l)s, are determined so that (4.2) is an implicit 
linear multistep formula of order s + 1. 

Then the scheme is called an (a*, a) P,EC,+ , E scheme. 1 

Predictor-corrector schemes similar to those given by Definition 4.1 have been 
considered in [41-43,47,48). In connection with the stability interval, hi,,e, we have 
to solve 

PROBLEM 4.1. Let s be an integer larger than 1. Find two numbers a,* and a, 
which generate an (a*, a) P,EC,+ , E scheme with as large an Airnag as possible. 1 

Problem 4.1 was solved numerically for s E {2, 3, 4} using the optimization 
algorithm from 1411. Let E be a positive number which can be made arbitrarily small. 
In the optimization process, (a*, a) P,EC,+ , E schemes with himag = 2 - E (for s = 2) 
and himag = 1.73 - E (for s = 3) have been obtained. For s = 4 no (a*, a) P,EC,E 
scheme with a stability interval containing the origin has been found. However, 
(a*, a) P,EC,E schemes, which are stable in the interval (0.16, 1.28 - E], can be 
constructed. We do not know whether it is possible to apply such schemes in 
practice. 

Remark 4.1. A comparison between the best (with regard to the stability 
requirements) single formulae (2.4) and (a*, a) P,EC,+ , E schemes indicates that one 
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can expect that the best (a*, a) P,EC,+ i E schemes can be applied with a stepsize 
which is nearly twice as large as the optimal stepsize for the best linear multistep 
formulae (2.4). This means that the number of time-steps for the best 
(a*, a) P,E’G+ 1 E schemes will be nearly twice as small as the number of time-steps 
for the best linear multistep formulae (2.4). Unfortunately, it does not follow from 
this fact that the computational work will be twice as small when the best 
(a*, a) P,EC,+ , E schemes are used. The problem is that the computational work per 
step is greater for the (a*, a) P,EC,+ I E schemes (because two formulae are used). 
Nevertheless, the use of (a*, a) P, EC,, , E schemes has at least two advantages. 

(i) The values of functions u(x, y, t), v(x, y, t), and Q(x, y, t) on the grid points 
have to be calculated once per step both when a formula of type (2.4) is used and 
when an (a*, a) P,EC,+, E scheme is applied. 

(ii) A very cheap estimation of the order of accuracy of the solution of the 
system of ODE’s can be calculated when a predictor-corrector scheme is used. This 
gives a possibility of building in an automatic check of the accuracy of the 
results. I 

5. CHOICE OF TEST-EXAMPLES 

Some numerical experiments will be carried out in Section 7 in order to illustrate 
the influence of the time-integration algorithm on 

(i) the stability of the results, 
(ii) the accuracy of the results, and 

(iii) the computing time needed to obtain the results. 

Such experiments have to be carried out with text-examples which are both simple 
and representative. A very reliable test-example (which satisfies both requirements) 
has been proposed by Molenkamp [32] and Crowley 191. This example (sometimes 
slightly modified) has been used in many papers; e.g., [ 1, 5, 6, 13, 29, 33, 34, 35 1. In 
the notation used in this paper, the Molenkamp-Crowley test-example can be 
formulated as follows. 

PROBLEM 5.1. Find some acceptable approximation to the solution of the partial 
differential equation given by 

~=(l--y)~-i-(r-l)g, XE [0,2], yE [0,2], tE [0,2~1, (5.1) 

x0 = 0.5, y, = 1.0, r = 0.25, f= \/(x - xfJj2 + (y - .Ycd2, (5.2) 

c(x, y,O)= lOO(1 -X/l-) for 2 < r, 
(5.3) 

=o for 2 > r. 
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FIG. 1. The solution of Problem 5.1 on a 16 X 16 grid at t = 0 by the (-0.85, 1.80) P,EC,E scheme 
(see Section 6); this means that this is the initial distribution. 

Sometimes Problem 5.1 is used in a slightly modified form as follows. 

PROBLEM 5.2. Consider Problem 5.1 with (5.3) replaced by 

c(x, y, 0) = 50[ 1 + cos(?qr) ] for X < r, 

=o for x>r. 
(5.4) 

FIG. 2. The computed solution of Problem 5.1 on a 16 x 16 grid at f = 42 by the (-0.85, 1.80) 
P, EC, E scheme (see Section 6); this means that the calculated solution after one quarter of a revolution 
is given in this figure. 
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FIG. 3. The computed solution of Problem 5.1 on a 16 x I6 grid at t = z by the (-0.85, 1.80) 
P,EC,E scheme (see Section 6); this means that the calculated solution after one half of a revolution is 
given in this figure.’ 

We shall show that the original Molenkamp-Crowley test-example (Problem 5.1) 
is more stringent with regard to the accuracy requirements than its modified form 
(Problem 5.2, which is often called the cosine hill; see 1291). 

It is easy to check the accuracy of the approximations at the endpoint (t = 27r) of 
the time-interval because, both for the original test-example (Problem 5.1) and for its 
modified form (Problem 5.2), the following relationship holds. 

C(& 4’3 2x)= c(x, y, 0) for VxE IO,21 and for VxE 10,21. (5.5) 

More generally, it can easily be seen that Eq. (5.1) describes a rotation of the 
initial distribution c(x, J’, 0) with a constant angular velocity around the axis perpen- 

FIG. 4. The computed solution of Problem 5.1 on a 16 x 16 grid at I = 3n/2 by the (-0.85, 1.80) 
P, EC,E scheme (see Section 6); this means that the calculated solution after three quarters of a 
revolution is given in this figure. 
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FIG. 5. The computed solution of Problem 5.1 on a 16 x 16 grid at t = 271 by the (-0.85. 1.80) 
P, EC,E scheme (see Section 6); this means that the calculated solution after a revolution is given in this 
figure; 118 time-steps are needed for a full revolution. 

dicular to the (x, y) plane and cutting this plane at the point (1.0, 1.0). This is 
demonstrated in Figs. l-5. 

A third test-example, which is more stringent with regard to accuracy than 
Problem 5.1, is also needed in our experiments. As such a test-example we will use 
the following problem. 

PROBLEM 5.3. Find some acceptable approximations to the solution of the partial 
differential equation given by 

a~ ac --- 
at- ax’ XE [0,7-j, tE 10, 11, 

It is clear that the exact solution of Problem 5.3 is 

c(x, t) = +‘O-“?,2”?. 
(5.7) 

Problem 5.3 has been solved with different space discretizations, using grids with 
2M = 2k (k = 2(1)7). Some of the numerical results will be given in Section 7. 

Some acceptability criteria have to be used when the problems are solved approx- 
imately. The acceptability of the results depends on the answer to the following 
question: Where will the results be used? This means that the acceptability of the 
results depends on the user’s needs and two different users may have different accep- 
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tability requirements (if the results are to be used for different purposes). However, 
some acceptability requirements (though sometimes in a very vague form) are always 
stated and the approximate solution is acceptable if the user has good reasons to 
expect that these requirements are satisied. The acceptability criterion used in our 
experiments is defined as follows. Let (]I . I( being the uniform norm of the vector 
under consideration) 

T= IIcij-c(xi, Yj, 2~>11 

II c(xiY Vj3 2nll ’ 
(5.8) 

where cii and c(xi, vj, 27r) are, respectively, the computed solution and the exact 
solution of Problem 5.1 or Problem 5.2 at the grid point (xi, yi) (i = O(1) 2M, 
j=0(1)2N) for t=2n. 

In the case where Problem 5.3 is solved let 

T = II ‘i - ‘txi, ‘>I1 

llc(xi, 1>11 ’ (5.9) 

where ci and c(xi, 1) are, respectively, the computed solution and the exact solution 
at the grid-point xi (i = 0( 1) 2M) for t = 1.0. 

Acceptability Criterion 

The approximate solution obtained by the use of any time-integration algorithm is 
acceptable if T < 0.1. 1 

It should be noted that the acceptability criterion defined above is easily 
computable for all test-examples proposed in this section. The requirement for 10% 
relative accuracy of the approximate solution is often used in different fields in 
science and engineering. 

6. TIME-INTEGRATION ALGORITHMS USED IN THE 
NUMERICAL EXPERIMENTS 

Eight time-integration algorithms have been selected and attached to our package 
for solving partial differential equations describing different atmospheric phenomena 
[44,45]. These time-integration algorithms will briefly be discussed in this section. 

Algorithm 1. This algorithm is based on the use of the classical leapfrog 
(midpoint) rule, which is one of the frequently used explicit methods; see, e.g., 
[ 3 1,391. This formula can be found from the general formula (2.4) by setting s = 2, 
a, = 0, a2 = 1, p, = 2, p2 = 0. It is easily seen that the formula is of order p = 2 and 
that its stability interval on the imaginary axis is himag = 1. 1 

Algorithm 2. This algorithm is based on the explicit third order Adams- 
Bashforth formula [2]. It can be found from the general formula (2.4) by setting 
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s = 3, a, = 1, a2 = 0, a3 = 0, j3, = 23/12, /IZ = -16/12, /I3 = 5/12. The order of the 
formula is p = 3 and the length of its stability interval on the imaginary axis is 
himag = 0.72. 1 

Algorithm 3. This algorithm is based on the two-parameter family of formulae 
discussed in [50]. A member of this family can be found from the general formula 
(2.4) by setting s = 3, a3 = 1 -a, -a,, /3, = 914 - a,/3 - a,/12, /Is = 912 - 2a, - 
a,/2 + 2/?i, /I3 = -3/2 - a,/2 +/I,. We shall refer to any formula of this family as 
(a,, a,)-formula. The order of any (a,, a,)-formula is p = 3. The free parameters a, 
and a2 have been chosen so that the length of the stability interval of the formula is 
larger than the length of the stability interval of the third order Adams-Bashforth 
formula. In our experiments we shall use the formula found by a, = 1.0 and a? = 0.4. 
The length of the stability interval for the (1.0,0.4)-formula is himag = 0.86. 1 

Algorithm 4. This algorithm is based on the well-known Adams P, EC, E 
scheme. The Adams predictor-corrector schemes can be found from the general class 
(4.1), (4.2) by setting a: = a, = 1 (s = 2, 3,...). These schemes are implemented in 
many codes (see, e.g., [ 15, 16, 22, 26, 371). The length of the stability interval on the 
imaginary axis for the Adams P,EC,E scheme is himag = 1.20. 1 

Algorithm 5. This algorithm is based on the well-known Adams P,EC,E 
scheme. This means that its coefficients can be computed from (4.1), (4.2) by setting 
a* = a, = 1 (s = 3). The length of the stability interval on the imaginary axis for the 
Adams P,EC,E scheme is himag = 1.18. I 

Algorithm 6. This algorithm is based on the (-0.15, 1.00) P,EC, E scheme (this 
means that it can be found from (4. I), (4.2) by setting a,* = -0.15 and a,y = 1.00, 
s = 2). The length of the stability interval on the imaginary axis for the (-0.15, 1 .OO) 
P,EC,E scheme is himag = 1.61. 1 

Algorithm 7. This,algorithm is based on the (-0.05, 1.85) P,EC, E scheme (this 
means that it can be found from (4.1), (4.2) by setting a,* = -0.05 and a, = 1.85, 
s = 2). The length of the stability interval on the imaginary axis for the (-0.05, 1.85) 
P,EC,E scheme is hi,,B = 1.95. 1 r 

Algorithm 8. This algorithm is based on the (-0.85, 1.80) P,EC,E scheme (this 
means that it can be found from (4.1), (4.2) by setting a: = -0.85 and a, = 1.80, 
s = 3). The length of the stability interval on the imaginary axis for the (-0.85, 1.80) 
P,EC,E scheme is himag = 1.70. 1 

All eight of these time-integration algorithms have been tested in the solution of 
many test-examples. Some of the results will be presented in Section 7. It is also 
necessary to emphasize that, -while Algorithms 1, 2, 4, and 5 are well known, 
Algorithms 3, 6, 7, and 8 have been developed by us for systems of ODE’s arising 
after the space discretization of some partial differential equations. 
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7. NUMERICAL RESULTS 

Some results obtained in the solution of Problems 5.1-5.3, using our package 
which implements the Fourier method in order to discretize the space derivatives and 
the eight time-integration algorithms given in the previous section, will be discussed 
below. However, before beginning this discussion it is necessary to mention that: 

(i) All experiments have been carried out on an IBM 3033 installation at 
NEUCC (Northern Europe University Computing Centre, Lyngby, Denmark) with 
the FORTH compiler (QPT = 2). 

(ii) All computing times are measured with the subroutine TIME from the 
standard library at NEUCC and are given in seconds. 

(iii) The explicit first-order Euler method has been used to compute the starting 
approximations in all time-integration algorithms (the time-integration algorithms are 
based on formulae which are not self-starting; see Section 2). 

The space derivatives in Problem 5.1 have been discretized by the grids xi = 
(i- l)dx, yj=(j- I)dy, dx=dy=i, i= 1(1)17,j= 1(1)17. Then all eight time- 
integration algorithms have been used to calculate approximations to the solution of 
Problem 5.1 at t = 2n. Similar rules have been used in the space discretization of the 
other test-problems. The experiments show that the following conclusions can be 
drawn. 

(A) For Problem 5.1 with 2M = 2N = 16 the bound (2.22) is very pessimistic. 
This should be expected because it is well known that “this example to some extent 
behaves like a constant coefftcient example” ([ 13, p. 524 ]; see also the transformation 
of the coordinates in (321). However, note that the theoretical limits for AC (which are 
computed with u* = t’* = 1.0) will ensure stable computations for all eight time- 
integration algorithms. Moreover, both the theoretical limits and the actual limits (see 

TABLE I 

Time-Integration Algorithm Theoretical Limit for df Actual Limit for A/ 

Leapfrog (midpoint) rule 0.02274 0.02454 
Third order Adams-Bashforth 0.01637 0.02662 
(1.0,0.4)-formula 0.01955 0.02856 
Adams P, EC, E scheme 0.02728 0.04620 
Adams P, EC, E scheme 0.02683 0.04245 
(-0.15, 1.00) P,EC, E scheme 0.03661 0.05712 
(-0.05. 1.85) P, EC, E scheme 0.04434 0.054 I7 
(-0.85, 1.80) P, EC, E scheme 0.03865 0.05325 

Nole. The theoretical limits are computed by the use of bound (2.22) for Problem 5.1 with 2M = 
2N = 16 and u* = v* = 1.0. The actual limits are experimentally found taking into account the accep- 
tability criterion in Section 5. 
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Table I) for the last three schemes are much larger than the corresponding limits for 
the leapfrog algorithm which is traditionally used in the numerical solution of partial 
differential equations. 1 

(B) The accuracy requirements limited the stepsize when the leapfrog rule and 
the (-0.05, 1.85) P,EC,E scheme were used. In all of the other six time-integration 
algorithms the stability requirements were the reason for the actual limit of the 
stepsize in Table I. For example, the (-0.05, 1.85) P,EC,E scheme can be used with 
At = 0.06042, but this causes a relative error of 12% at the point x = 0.5, y = 1.125 

( i.e., the point just over the point where the top of the cone is located when 
t=271). I 

(C) The fact that the predictor-corrector schemes have been used with larger 
values of At does not mean automatically that the computing times for the predictor- 
corrector’schemes are smaller than those in the cases where single formulae (one of 
the first three algorithms) are used. The problem is that the computational work per 
step for the predictor-corrector schemes is larger. Nevertheless, it is seen from 
Table II that the (-0.15, 1.00) P,EC, E scheme is the most economical with regard to 
the computing time used (i.e., this scheme can be applied with so large a At that the 
extra computing time used at each step is fully compensated by the reduction of the 
number of time-steps). Note too that if the accuracy requirements are relaxed by 2% 
(i.e., if the relative error tolerance is increased to 12%), then the (-0.05, 1.85) 
P,EC,E scheme will be the best one with regard to the computing time. In the latter 
case the integration process will be completed in 104 steps after 5.09 set by the 
(-0.05, 1.85) P,EC,E scheme. Finally, it should be mentioned that only the 
predictor-corrector schemes which we have developed for our package (the last three) 

TABLE II 

Time-Integration Algorithm 

Number 
of 

Steps 

Largest Smallest 
Largest Value of Value of 

Computing error the Solution the Solution 
Time (percentage) att=Zrr at f = 2n 

Leapfrog (midpoint) rule 256 6.23 
Third order Adams-Bashforth 236 5.83 
( I .O, 0.4).formula 220 5.60 
Adams P, EC, E scheme 136 6.74 
Adams P, EC, E scheme 148 1.34 
(-0.15, 1.00) P,EC,E scheme 110 5.35 
(-0.05, 1.85) P, EC, E scheme 116 5.76 
(-0.85, 1.80) P, EC, E scheme 118 5.85 

97 -4 
96 -2 
92 -2 
93 -3 
97 -2 
92 -4 
95 -5 
96 -2 

Note. Some characteristics concerning the approximate solutions of Problem 5.1 (at the end of the 
time-interval, t = 2n) found by the eight time-integration algorithms. The acceptability criterion from 
Section 5 is used. 
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are competitive with the algorithms based on the use of single formulae (the first 
three). The classical Adams predictor-corrector schemes (which are commonly used 
in the solution of ODE’s) are clearly more time consuming. I 

In the solution of Problem 5.1 with 2M = 2N = 16 the stability requirements are 
dominant over the accuracy requirements (imposed by the acceptability criterion in 
Section 5) for six of the time-integration algorithms. For the other two algorithms 
(leapfrog and the (-0.05, 1.85) P,EC, E scheme) the accuracy requirements are 
slightly dominant. However, the general conclusion is that for Problem 5.1 with 
2M = 2N = 16 the stability and the accuracy requirements are balanced in some 
degree. By this we mean that the actual limit of At is close to the maximal value 
allowed by the stability properties of the time-integration algorithm (except perhaps 
for the leapfrog whose order is only two). We believe that this is a typical situation in 
the atmospheric environment where the concentration of the pollutants can change 
sharply in different parts of the domain, but this is compensated to some degree by 
the fact that the error tolerance is also normally large. Nevertheless, we have carried 
out many experiments where no balance between the accuracy requirements and the 
stability requirements is presented. Some of these experiments will be described 
below. 

Let us begin with the situation where the accuracy requirements are dominant over 
the stability requirements. Problem 5.3 was used as a text-example where this is true. 
Some results obtained with 2M = 32 are given in Tables III and IV. The experiments 
(in which some other values of M have also been used) allow us to draw the 
following conclusions. 

(D) The actual limits for the stepsize At are much smaller than the theoretical 
limits obtained by the use of stability bound (2.22). The advantage of using more 
accurate formulae (of order four, i.e., the Adams Pz EC,E scheme and the 
(-0.85, 1.80) P,EC,E scheme) is obvious. It should be mentioned here that some 

TABLE III 

Time-Integration Algorithm Theoretical Limit for dt Actual Limit for dl 

Leapfrog (midpoint) rule 0.02122 0.0045 
Third order Adams-Bashforth 0.01528 0.0056 
( 1 .O, 0.4).formula 0.01825 0.0049 
Adams P, EC, E scheme 0.02546 0.009 1 
Adams P, EC, E scheme 0.02504 0.0125 
(-0.15, 1.00) P,EC,E scheme 0.034 I7 0.011 l 
(-0.05, 1.85) P, EC, E scheme 0.04138 0.0101 
(-0.85, 1.80) P, EC,E scheme 0.03608 0.0125 

Note. The theoretical limits (for Problem 5.3) are computed by the use of bound (2.22) with 2M = 32. 
U* = 1, c.* = 0, and dx = A. The actual limits are experimentally found taking into account the accep- 
tability criterion in Section 5. 
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TABLE IV 

Time-Integration Algorithm 

Largest Smallest 
Number Largest Value of Value of 

of Computing error the Solution the Solution 
Steps Time (percentage) at I= 1.0 att= I.0 

Leapfrog (midpoint) rule 224 0.31 9.3 95.8 -9.3 I 
Third order Adams-Bashforth 179 0.28 9.2 90.8 -5.86 
(1.0,0.4)-formula 204 0.30 8.9 91.1 -7.24 
Adams P, EC, E scheme I10 0.25 8.8 91.2 -4.52 
Adams P, EC, E scheme 80 0.19 8.3 93.1 -2.03 
(-0.15, 1.00) P,EC,E scheme 90 0.21 9.2 90.8 -5.57 
(-0.05. 1.85) P,EC,E scheme 99 0.23 9.1 96.0 -7.87 
(-0.85, 1.80) P, EC, E scheme 80 0.19 6.3 93.1 -2.87 

Nofe. Some characteristics concerning the approximate solutions of Problem 5.3 (at the end of the 
time interval, t = 1.0) found by the eight time-integration algorithms. The acceptability criterion from 
Section 5 is used. 

time-integration schemes are very sensitive to the accuracy requirements. This is 
especially true for the leapfrog rule. Problem 5.1 has been solved with an accuracy 
requirement T < 0.02 (which is much more stringent than the acceptability criterion 
given in Section 5). This reqirement can be satisfied if 1024 steps with the leapfrog 
rule are carried out (24.73 set); compare these results with Table II. Both the third 
order Adams-Bashforth formula and the Adams P,EC,E scheme are not very 
sensitive to the accuracy requirements. In the solution of Problem 5.1 with T < 0.02, 
360 (8.97 set) and 170 (8.37 set) steps were needed for the third order Adams- 
Bashforth formula and for the Adams P,EC,E scheme respectively; compare these 
results with those for the leapfrog rule above and with the results in Table II. 

Note too that in the general case both the time-step and the distances between the 
grid-points (i.e., the quantities Ax and/or Ay) have normally to be reduced when the 
degree of the required accuracy is increased. In all test-examples the use of the 
Fourier method leads to a high degree of accuracy of the space discretization even if 
very small values of M and/or N are specified. This is not necessarily true for 
arbitrary problems but it is convenient for our study because we are only interested in 
the performance of the time-integration algorithms. 1 

Now let us consider the case where the stability requirements dominate over the 
accuracy requirements. We shall consider the behaviour of the eight time-integration 
algorithms in the solution of Problem 5.1 with 2M = 2N = 32. Some results are given 
in Tables V and VI. The following conclusions can be drawn from these tables. 

(E) The accuracy requirements limited the stepsize only for the leapfrog rule. 
Nevertheless, the leapfrog rule is the best algorithm with regard to the computing 



22 ZLATEV, BERKOWICZ, AND PRAHM 

TABLE V 

Time-Integration Algorithm Theoretical Limit for AI Actual Limit for ,t/ 

Leapfrog (midpoint) rule 0.01061 0.01428 
Third order Adams-Bashforth 0.007639 0.01122 
(1 .O, 0.4).formula 0.009 125 0.0 1298 
Adams P, EC, E scheme 0.01273 0.01916 
Adams P, EC,E scheme 0.01252 0.01806 
(-0.15, 1.00) P,EC,E scheme 0.0 1708 0.02454 
(-0.05, 1.85) P, EC, E scheme 0.02069 0.02662 
(-0.85, 1.80) P, EC,E scheme 0.01804 0.02344 

Note. The theoretical limits for Problem 5.1 are computed by the use of bound (2.22) with 2M = 
2N = 32, u* = L’* = 1.0, Ax = AJJ = &. The actual limits are experimentally found taking into account 
the acceptability criterion in Section 5. 

time used for this problem. The performance of the leapfrog rule (with regard to the 
computing time used) will be slightly improved if the acceptability criterion T < 0.1 
is replaced by T ,< 0.12. The computations will be completed in 420 step after 
34.04 set in this situation, If Problem 5.2 is run instead of Problem 5.1, then the 
results obtained with the use of 420 steps (after 34.21 set) will be acceptable also 
when a very stringent error tolerance (T < 0.02) is used. Some characteristics 
obtained in such a run are given in Table VII. The results show clearly that the 
accuracy requirements are considerably weakened when the initial value condition 
(5.3) in the original Molenkamp-Crowley test-example (Problem 5.1) is replaced by 
the initial value condition (5.4) in the modified test-example (Problem 5.2). 1 

TABLE VI 

Time-Integration Algorithm 

Number 
of 

Steps 

Leapfrog (midpoint) rule 440 37.25 10 93 5 
Third order Adams-Bashforth 560 48.16 4 96 -I 
(I .O, 0.4).formula 484 42.98 6 94 -1 
Adams P, EC, E scheme 328 54.18 5 95 -1 
Adams P, EC, E scheme 348 58.01 2 98 0” 
(-0.15, 1.00) P,EC,E scheme 256 42.97 6 94 -1 
(-0.05. 1.85) P,EC,E scheme 236 39.31 7 93 -4 
(-0.85. 1.80) P, EC, E scheme 268 45.04 4 96 0’: 

Computing 
Time 

Largest Smallest 
Largest Value of Value of 

error the Solution the Solution 
(percentage) att=2n at f = 211 

Note. Some characteristics concerning the approximate solutions of Problem 5.1 (at the end of the 
time-interval, t = 2~) found with 2M = 2N = 32 and by the eight time-integration algorithms. The accep- 
tability criterion from Section 5 is used. The smallest value of the calculated solution is given as 0 when 
it is larger than -0.5. 
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TABLE VII 

Number of steps 420 
Length of the time-step&e At 0.01496 
Computing time 34.21 
Largest error at f = 2n 2 “‘6 
Largest value of the solution at I = 277 99 
Smallest value of the solution at t = 272 -2 

Note. Some characteristics obtained in the solution of 
Problem 5.2 with 2M = 2N = 32 with the leapfrog (midpoint) 
rule. 

(F) The third order Adams-Bashforth formula and the Adams predictor- 
corrector schemes perform very poorly in this situation. This is especialy true for the 
Adams predictor-corrector methods. However, note that these methods are very 
accurate. Nevertheless, this example explains why the classical Adams predictor- 
corrector methods are not popular in the numerical solution of partial differential 
equations describing advection phenomena (though they are very often used in the 
numerical solution of systems of ODE’s; see, for example, [ 15, 16, 20, 22, 26, 37, 
38,481). 1 

(G) The special predictor-corrector methods even in this situation (where the 
stability requirements are clearly dominant over the accuracy requirements) perform 
sufficiently well. This is especially true for the (-0.05, 1.85) P,EC,E scheme. For 
large problems, where some extra work has to be carried out at each step (reading 
data, interpolation of values of some functions, etc.), the fact that these methods use 
considerably less steps will give some extra advantages. We have mentioned this also 
in Remark 4.1. 1 

8. SOME RECOMMENDATIONS ABOUT THE CHOICE 
OF A TIME-INTEGRATION ALGORITHM 

Our experiments, some of which are described in Section 7, show that the following 
recommendations concerning the choice of a time-integration algorithm can be given. 

(i) If the stability requirements are clearly dominant over the accuracy 
requirements, then the use of the leapfrog rule is the most advantageous (with regard 
to the computing time needed: Table VI as an illustration of this fact). 

(ii) If the accuracy requirements are clearly dominant over the stability 
requirements, then the time-integration algorithms of high order (in our set of time- 
integration algorithms, the Adams P3EC,E scheme and the (-0.85, 1.80) P,EC,E 
scheme) will be the best algorithms with regard to the computing time needed; see 
Table IV as an illustration of this statement. 
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(iii) If the accuracy requirements and the stability requirements are in balance. 
then the time-integration algorithms which are both accurate and with large stability 
intervals himas will be the best algorithms. Several such algorithms have been 
developed and tested in the present study with problems of this type. As an 
illustration for the good performance of these algorithms, see Table II. 

The numerical results show also that it is difficult to propose a general-purpose 
time-integration algorithm which performs well in cases (i)-(iii). Therefore we have 
included all eight algorithms in our package. The user ef the package is able to 
choose (optionally) each of these algorithms according to the problem which is to be 
solved. Of course, there is another alternative: one can try to develop a code where 
the requirement for constant stepsize At is dropped and where the code will 
automatically change both the stepsize and the time-integration formula in order to 
achieve both the stability and the accuracy requirements. We shall briefly discuss this 
possibility in Section 9. Now we shall conclude this section with several remarks. 

Remark 8.1. The stability bounds derived in Section 2 cannot be directly applied 
in the calculation of the stepsize At which has to be used in the actual computations. 
Indeed, if the accuracy requirements are dominant over the stability requirements, 
then the stepsizes which have to be used in order to get acceptable results are much 
smaller than the stability bounds derived in Section 2. On the other hand, if the 
stability requirements are dominant over the accuracy requirements and if the 
functions u(x, y, t) and v(x, y, t) vary rapidly in x, ~1, and/or t, then the stability 
bounds derived in Section 2 will ensure stable calculations. However, these bounds 
may be rather pessimistic (because U* and zj* have to be used in the stability 
restrictions for At). Nevertheless, these bounds are very useful because they tell us 
that time-integration algorithms, which are sufficiently accurate and for which the 
bounds derived in Section 2 are large, will perform well. 1 

Remark 8.2. We must emphasize once again that one should be very careful 
when the time-integration algorithms with large stability intervals are constructed. It 
is not sufficient that the algorithm has a large stability interval; it must also be 
sufficiently accurate (the lower accuracy of some algorithms with large stability 
intervals is discussed in 123 1). I 

Remark 8.3. If the storage requirements are an important factor, then the 
leapfrog rule can be implemented in the most economical way. The Adams predictor- 
corrector schemes are slightly more economical (with regard to the storage 
requirements) than the predictor-corrector schemes developed by us (the last 
three). 1 

9. DEVELOPMENT OF VARIABLE STEPS%% VARIABLE FORMULA METHODS 

All time-integration algorithms are used as constant stepsize constant formula 
methods in this paper. This fact puts some requirements to the user. The user must 
determine a good (or, if possible, the best) formula and a large (or, if possible, the 
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largest) time-stepsize by which acceptable results will be calculated. Normally, the 
user knows his problems sufficiently well to be able to determine both the formula 
and the stepsize which have to be used in the constant stepsize constant formula time- 
integration algorithm. In such a case, he can hope to solve his problem in an efficient 
way (see, e.g., [49]). Nevertheless, the situation might be much better if a reliable rule 
for automatic determination of a good stepsize and a good formula at each step were 
incorporated in the code. This idea leads to the so-called VSVFM’s (variable stepsize 
variable formula methods); see [42,43, 48 1. 

The first code where such a rule has been incorporated was the code developed by 
Krogh [26 1; see also [ 171. Many other codes have been developed after 1969, 
115, 16, 20, 37,48 1. This idea can also be attractive in the atmospheric environments. 
In order to show this let us consider the case where the functions U(X, J, t) and 
v(x, y, t) are quickly varying in t. In this’case, U* and L’* computed by (2.20) may 
impose a very severe (and unnecessary) restriction in the time-stepsize bound (2.22). 
Therefore it is desirable to use 

(9.1) 

(r,* being a neighbourhood of the current integration point tk) in the choice of the 
stepsize and/or formula at the time-step t = t, because k and/or V can be much 
smaller than U* and/or u*, respectively. If the latter situation occurs, then the code 
will possibly select a large stepsize At (or that formula which allows the use of as 
large as possible At). Thus, the use of a variable stepsize variable formula method will 
normally lead to some reduction of the time-steps, and therefore, to some reduction in 
the total computational work. Moreover, the implementation of a variable stepsize 
variable formula method will give, as a secondary effect, a rather reliable evaluation 
of the accuracy of the results. 

One should be careful, however. The codes mentioned above will clearly be inef- 
ticient in the solution of the special systems of ODE’s obtained after the 
discretization of the space derivatives in (1.1). These codes are general-purpose codes 
and the formulae used are selected so that the absolute stability regions S* (see 
Definition 2.3) of the formulae involved are as large as possible. We are not 
interested in large stability regions. The stability intervals on the imaginary axis are 
important for us. Therefore, special formulae (or predictor-corrector schemes) with 
large stability intervals have to be constructed and used as basic formulae (or basic 
predictor-corrector schemes) in the variable stepsize variable formula methods which 
will be suitable for our special systems of ODE’s. Note that the Adams predictor- 
corrector schemes are commonly used in the general-purpose codes. It is obvious that 
these schemes will be very inefficient just in the case where efficiency is most desired 
(when the stability requirements are dominant over the accuracy requirements; see 
the numerical results given in Table VI). 



26 ZLATEV, BERKOWICZ, AND PRAHM 

The above analysis shows that the idea of using variable stepsize variable formula 
methods is attractive, but it is not very easy to implement such an idea in a practical 
code. One should not just select one of the subroutines already developed because the 
basic formulae in all known packages are used in order to get as large regions of 
absolute stability as possible, while we are obviously interested only in the stability 
intervals on the imaginary axis. Special formulae (or special predictor-corrector 
schemes) have to be developed and implemented for our special situation. Some such 
methods have been presented in this paper (Algorithms 3. 6-8). We plan to develop a 
variable stepsize variable formula time-integration algorithm capable of treating 
efficiently some advection-diffusion processes arising in the atmospheric 
environment. 
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